Package: TBFmultinomial 0.1.3

TBFmultinomial: TBF Methodology Extension for Multinomial Outcomes

Extends the test-based Bayes factor (TBF) methodology to multinomial regression models and discrete time-to-event models with competing risks. The TBF methodology has been well developed and implemented for the generalised linear model [Held et al. (2015) <doi:10.1214/14-STS510>] and for the Cox model [Held et al. (2016) <doi:10.1002/sim.7089>].

Authors:Rachel Heyard [aut, cre]

TBFmultinomial_0.1.3.tar.gz
TBFmultinomial_0.1.3.zip(r-4.5)TBFmultinomial_0.1.3.zip(r-4.4)TBFmultinomial_0.1.3.zip(r-4.3)
TBFmultinomial_0.1.3.tgz(r-4.4-any)TBFmultinomial_0.1.3.tgz(r-4.3-any)
TBFmultinomial_0.1.3.tar.gz(r-4.5-noble)TBFmultinomial_0.1.3.tar.gz(r-4.4-noble)
TBFmultinomial_0.1.3.tgz(r-4.4-emscripten)TBFmultinomial_0.1.3.tgz(r-4.3-emscripten)
TBFmultinomial.pdf |TBFmultinomial.html
TBFmultinomial/json (API)

# Install 'TBFmultinomial' in R:
install.packages('TBFmultinomial', repos = c('https://rachelhey.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • VAP_data - Data on VAP acquistion in one ICU

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 7 scripts 137 downloads 10 exports 11 dependencies

Last updated 6 years agofrom:b616719172. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:AIC_BIC_based_marginalLikelihoodCSVSmodel_priorsPIPs_by_landmarkingplot_CSVSPMPpostInclusionProbsample_multinomialTBFTBF_ingredients

Dependencies:cligluelifecyclemagrittrnnetplotrixrlangstringistringrvctrsVGAM

TBFmultinomial

Rendered fromTBFmultinomial.Rnwusingknitr::knitron Oct 29 2024.

Last update: 2018-10-12
Started: 2017-11-02